The Теореми Геделя мають на меті знайти логіку на аксіоматичній основі який знаходиться поза досяжністю.
До якої б системи аксіом не звик побудувати теорію, є пропозиції, які, як ми знаємо, істинні, але чиї істину неможливо продемонструвати в рамках системи.
Аксіома в теорії це a базова формула, яка вважається істинною без доказів.
Непослідовність це вміти демонструвати одна річ і протилежність.
незавершеність характеризує істини математика, яку неможливо довести.
Яким би не було багатство системи аксіом це не може відповідати потенціалу змісту думки.
чітке мислення – результат нашого роздуми на основі кінцевої кількості аксіом – простіше ніжскладне мислення що теоретично не може усвідомити.
Щоб вийти з дилеми істинного і неправильно одночасно, Ви повинні вийти із самої системи, залазь мета позиція, зовнішній зір, шляхом прийняття ширшої системи.
Логіка має свої межі ; в будь-якій системі є незрозумілі істини.
Будь-який скінченний набір достатньо багатих аксіом обов'язково призводить до результатів, які неможливо визначити, або суперечливі.
Будь-яка людська логічна система є неповною, якщо вона хоче послідовний. Узгодженість вимагає неповноти.
Умова неповноти, з якою зіткнувся вчений це не поразка розуму, а шанс прогресувати вводячи його в протистояння з таємницею, до таємниці пізнання.
Формула Ейнштейна, ” більшість незрозумілий, полягає в тому, що світ зрозумілий “, і налаштування свідчення про ” народжуваність ” неповноти подібні до двох ” знаки ” таємниці пізнання в сучасному науковому підході.
Правда не можна виразити з точки зору доказовості.Доказувана річ не обов’язково є істинною і а істина не обов'язково піддається доказу.
Знайти істини в заданій системі це має бути в змозі вийти з нього і для цього мати причину, здатну створити a системи, в якій стара непоказова істина стане цілком демонструється.
Обсяг теорем Геделя має значення значний для будь-якої сучасної теорії пізнання. Перш за все він стосується не тільки області арифметики, але й усі математика, яка включає арифметику. Але математика, яка є інструментом основи теоретичної фізики містить, очевидно, l’arithmétique. Cela signifie que toute recherche complète d’une théorie physique est illusoire. Si cette affirmation est vraie pour les domaines les plus rigoureux de l’étude des systèmes naturels, comment ne pourrait-on ne pas rêver d’une théorie complète dans un domaine infiniment plus complexe – celui des sciences humaines ?
La structure gödelienne de l’ensemble des рівні реальності, associés à la logique dutiers inclus, implique la possibilité de bâtir une théorie complète pour décrire le passage d’un niveau à l’autre et, à fortiori, pour décrire l’ensemble des niveaux de réalité .
081